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Abstract
To overcome line-of-sight limitations in 3D sensors, cooperative
perception shares sensor information between vehicles in real-time.
Core to cooperative perception is the alignment of sensor data in mul-
tiple coordinate systems. Existing techniques use 3D maps and GPS
for alignment, but these can lead to inaccurate alignments. However,
improving alignment accuracy incurs additional compute latency,
which is not desirable. In this paper, we present ARC1 , a system that
navigates carefully that tradeoff between latency and accuracy for
point cloud alignment. ARC uses an anchor-based alignment tech-
nique to align vehicles to a common coordinate system. It minimizes
latency by using grid-based spatial reasoning to perform alignment
only in overlapping regions of the point clouds. ARC reuses the
same spatial reasoning to selectively share only the most relevant
data among vehicles. ARC fuses point clouds from up to 40 vehicles,
incurring only 20 ms latency and under 7 cm alignment error, as
demonstrated on both real-world and simulated traces.
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1 Introduction
Critical to the operation of autonomous vehicles is their ability to un-
derstand the environment around them. For this, they use sensors like
cameras [8], Radars [43] and LiDARs [31] etc. LiDARs send out mil-
lions of light rays multiple times per second and, from their returns,
construct 3D point clouds. These are data structures that consist of a
large number of points, each point is defined by its 3D position along
with other attributes like intensity and reflectivity. However, LiDARs
are prone to occlusions and line-of-sight limitations. This limitation

1GitHub Repository: https://github.com/nsslofficial/ARC
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(a) A turns left, while E and C head straight. (b) Vehicle A’s LiDAR point cloud.

Figure 1: Bird’s-eye view of an intersection where (a) vehicle A turns left
while other vehicles head straight, (b) In A’s point cloud, only B and D are
visible; C and F are occluded by B, and E is occluded by D.
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Figure 2: After fusing B’s (blue) and D’s (green) point clouds with A’s (red)
point cloud, A can clearly see all the vehicles.

is especially prevalent at traffic intersections where occlusions are
common due to the denser traffic flow. Intersections account for
nearly half of all fatal accidents in the U.S. [30].

Cooperative perception solves this challenge by having vehicles
(and road sensors [21]) share 3D point clouds with each other [54].
For instance, in Fig. 1, vehicle A cannot perceive vehicles C, F, and
E because they are occluded by vehicles B and D. If vehicles B
and D share their point clouds with vehicle A, it can overcome its
occlusion. After receiving the point clouds from vehicle B or vehicle
D, vehicle A aligns the point cloud to its own coordinate system.
Then, it appends the aligned point clouds to its own to build a fused
point cloud (Fig. 2). This is called cooperative perception.

While cooperative perception is conceptually straightforward, its
application to autonomous (or human) driving imposes strict latency
and accuracy constraints. Autonomous vehicles must sense their
surroundings, plan a path, and actuate at least 10 times per second
with a tail latency under 100 ms [6, 26]. Moreover, they must localize
themselves and surrounding objects with cm-level accuracy [4].
Naturally, the requirements apply to cooperative perception as well.

Accurate and fast cooperative perception introduces a number of
system-level challenges. Vehicles must share and align point clouds

https://github.com/nsslofficial/ARC
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Figure 3: All vehicles align with the anchor (vehicle A).

at low latency, leaving ample time for downstream perception mod-
ules (object detection, motion forecasting, drivable space detection)
to consume the fused data. The fused data should also be correct
i.e., the 3D point clouds must be aligned accurately. Lastly, this
capability should scale to a large number of vehicles. However, tra-
ditionally, low latency and high accuracy are conflicting goals due to
network and compute constraints. Point cloud alignment is compute-
intensive and can be erroneous. Moreover, because 3D point clouds
are voluminous [35, 45], sharing multiple point clouds over the wire-
less network can easily exhaust it. Although prior works [34, 54]
address network bottlenecks by exchanging only the most relevant
information among vehicles, to our knowledge, achieving accurate
alignment across multiple vehicles remains relatively unexplored.

To better understand, we describe how point cloud alignment
is performed. The first set of techniques, called direct alignment,
match overlapping regions between point clouds (and the features
in them) to compute a transformation matrix. This transformation
matrix, when applied to one point cloud, aligns it to the other’s
coordinate system. If a vehicle has to align with multiple vehicles,
it must directly align with every vehicle. For instance, if a vehicle
needs data from four vehicles, it might directly align with all four
vehicles. Consequently, this approach does not scale. To this end,
prior works [33, 34] use indirect alignment i.e., they align all vehicles
to a shared 3D map2. Because every vehicle aligns itself to the same
3D map, they indirectly align with one another. However, 3D maps
can contain noise because they are built by aligning thousands of
point clouds [25]. Noise in the 3D map can significantly degrade
point cloud alignment accuracy.

Both approaches exhibit trade-offs. Direct alignment is accurate
but incurs significant latency and does not scale well. Indirect align-
ment, on the other hand, is fast and scalable but suffers from lower
accuracy. In this paper, we ask the question: can we design a coop-
erative perception system that enables high accuracy alignment at
low latency and scale to a large number of vehicles?
Our Approach. To simultaneously achieve high accuracy and low
latency, in this paper, we propose an anchor-based alignment tech-
nique. Instead of directly aligning with each other, the vehicles align
themselves with a common anchor. This anchor can be a LiDAR
mounted on the roadside or a moving vehicle. Once every vehicle

2This is a large point cloud that has a 1:1 correspondence with the physical world that
vehicles use to localize themselves in the world.

aligns itself with the anchor, they are indirectly aligned with one
another. For example, in Fig. 3, vehicle A is the anchor with which
other vehicles (B, C, and D) align themselves.

Anchor-based alignment has two benefits. Although this is an
indirect alignment, it achieves high accuracy. This is because ve-
hicles align themselves to a single LiDAR frame as opposed to an
accumulation of LiDAR frames (3D map) which can be prone to
noise. Second, it ensures low latency because vehicles only need a
single alignment operation i.e., with the anchor point cloud.
Challenges. While anchor-based alignment addresses the challenges
of prior techniques, it introduces challenges of its own.
• Every vehicle must align its point cloud with the anchor’s point

cloud at every frame. This point cloud alignment must be fast to
allow the downstream perception modules to consume the fused
point cloud. At the same time, the alignment must also be accurate.
• Second, once aligned, if all vehicles at the intersection share

their raw point clouds, it would easily exhaust the wireless network.
So, vehicles should only exchange relevant 3D data. Reasoning
about which data is relevant can be computationally intensive.
Contributions. We tackle these challenges by building an end-to-
end system, ARC. It makes the following contributions.
• For fast alignment, instead of aligning the entire point clouds,

we compute the overlapping regions between pairs of point clouds
and only align those regions. To do this, we propose a fast spatial rea-
soning module that uses an underlying shared 3D grid to determine
the overlapping regions between the point clouds.
• Instead of using a separate module to determine what data

to send to each vehicle, we reuse the 3D grid. By doing so, we
enable accurate alignment without trading off computation latency.
Moreover, we design the 3D grid so that operations on it can be
easily offloaded to the GPU. This enables us to identify overlapping
regions and blind spots almost instantly.

An end-to-end implementation of ARC aligns vehicles with up
to cm-level accuracy at an end-to-end compute latency of 20 ms.

2 Background and Motivation

Limitations of 3D Sensors. Autonomous vehicles are equipped with
depth perception sensors like LiDARs. A LiDAR consists of several
radially positioned laser beams. Together, these laser beams emit
millions of light rays per second and, from their reflections, builds a
3D point cloud of the environment. This point cloud consists of 3D
points, defined by their positions and other attributes like intensity
and reflectivity. However, because LiDARs build point clouds from
reflected light rays, like human vision, they are prone to occlusions
and line-of-sight limitations. For instance, vehicle A’s point cloud
does not contain reflections from vehicle C because it is occluded by
vehicle B (Fig. 1). Additionally, the radial arrangement of a LiDAR’s
beams causes point density to decrease with distance, the density
of points (or reflections) drops significantly with distance. In other
words, the number of reflected points from an object of the same size
placed further away from the LiDAR is smaller than that of objects
nearby. Consequently, object detectors [22, 23] may not accurately
recognize objects further away from the LiDAR.
Cooperative Perception. To extend a vehicle’s perception range,
cooperative perception shares 3D point clouds between vehicles
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Figure 4: Indirectly aligning vehicles through a 3D map has an order of
magnitude higher alignment error as compared to direct alignment.

(and roadside sensors) over the wireless network. To do this, at every
frame, one vehicle (the sender) transmits its point cloud over the
wireless network to the other vehicle (the receiver). Upon receiving
the point cloud, the receiver aligns the point cloud in its own coordi-
nate system. After alignment, the receiver appends the aligned point
cloud with its own to build a fused point cloud. Then, downstream
perception modules consume the fused point cloud.
Requirements for Cooperative Perception. An autonomous vehi-
cle must sense, plan, and react to its surroundings at least 10 times
per second with a tail latency less than 100 ms [26]. Moreover, it
must position itself and the surroundings objects with up to cm-level
accuracy. Consequently, cooperative perception must also be fast and
accurate. If cooperative perception cannot build the fused point cloud
at low latency, by the time downstream perception modules consume
the data, it will be stale. Similarly, if point clouds are not aligned with
cm-level accuracy, it can be catastrophic for downstream modules
(like scene understanding and planning), which will operate on incor-
rect data. Broadly, cooperative perception approaches can use early
or late fusion. Late fusion saves network bandwidth by transmitting
compact, task-specific features (e.g., bounding boxes). However,
aligning compact features is often inaccurate and yields a processed
fused representation that is not usable for all downstream applica-
tions [39]. Early fusion may consume more bandwidth because it
transmits raw point clouds, but alignment is more accurate [21].
Moreover, the resultant fused point cloud can be readily processed
by downstream perception and planning modules.
Point Cloud Fusion. Point cloud fusion is a two-step process:
alignment and stitching. Given point clouds Pa and Pb captured by
vehicles A and B, the goal of point cloud alignment is to find a rigid
transformation Ta−b that aligns Pa to Pb. The transformation Ta−b
is a 4x4 matrix, consisting of a rotation matrix R and a translation
vector t. This transformation Ta−b, when applied to Pa, yields a
transformed point cloud P

′
a in the same coordinate system as Pb.

Stitching simply appends P
′
a to Pb to obtain a fused point cloud Pf

that contains all the points from P
′
a and Pb.

Iterative Closest Point (ICP [36]). Point cloud alignment algo-
rithms like ICP iteratively compute a transformation matrix Ta−b
that minimizes the 3D distance from every point in Pa to its nearest
neighbor in Pb. To do this, ICP requires both a large overlap between
the two point clouds and a coarse-grained alignment between them.
This coarse-grained alignment is an accurate initial guess of the
transformation matrix Ta−b. If the two vehicles are far away and/or
they do not have an accurate initial alignment, ICP will not be able
to accurately align the two point clouds.

Receiver LiDAR points

(a) Ground truth alignment (b) Indirect alignment 
(error: 30 cm)

(c) Direct alignment     
(error: 5 cm)

  Sender LiDAR points

Figure 5: Indirect and direct alignments error in the fused point cloud.

Direct Vs Indirect Alignment. Direct alignment feeds the two
point clouds (Pa and Pb) to an alignment algorithm, such as ICP, to
compute a transformation matrix (Ta−b). Although direct alignment
is accurate, it can incur significant latency if a vehicle has to align
with 3D point clouds from multiple vehicles. For instance, in Fig. 2,
to get a complete scene understanding, vehicle A needs to align with
two different vehicles. This entails two direct alignments. To tackle
this, prior works use indirect alignment.

Indirect alignment aligns both the point clouds to a third point
cloud (e.g., a 3D map). This produces two transformation matrices
(Ta−m and Tb−m). Using these matrices, we can compute the align-
ment between Pa and Pb as Ta−b = Ta−m ∗T−1

b−m. However, because
a 3D map can contain noise, this can lead to inaccurate alignments.

To demonstrate this, we collected LiDAR traces from two vehi-
cles and then aligned them using direct and indirect alignment. Fig. 4
shows that the error for indirect alignment (map-based alignment)
can be an order of magnitude greater than direct alignment. Quali-
tatively, Fig. 5 illustrates the effect of alignment error on the fused
point cloud. A 5 cm alignment error (for direct alignment) is hardly
noticeable, whereas a 30 cm error (indirect alignment) can cause
misdetections and errors in downstream perception modules. In this
paper, we ask the question: how can we achieve accurate alignment
at low latency for a large number of vehicles.
Network Bottleneck. LiDAR sensors such as the Hesai OT128 [41],
a 128-beam LiDAR with a 200 m range and 360° field of view, can
produce up to 6.91 million points per second, corresponding to data
rates of around 1 Gbps. Sending such high-bandwidth data over a
wireless link can easily exhaust the available network capacity. To
tackle this, prior works [34, 54] share only relevant information with
other vehicles. They extract dynamic objects and then determine
the subset of those that are relevant to every vehicle. For instance,
in Fig. 6a, B occludes A and C from each other. Although B can see
all vehicles at the intersection (Fig. 6b), it will only share occluded
vehicle C with A (Fig. 6c), and A with C (Fig. 6d).

However, determining what information is relevant can be inac-
curate and inefficient. Decentralized approaches (AutoCast [34])
rely on the sender to estimate what the receiver cannot see. Conse-
quently, they can make inaccurate determinations [54], and since
there is no coordination amongst vehicles on what to share, multiple
sender vehicles might end up sharing duplicate data with the receiver
vehicle (resulting in higher bandwidth consumption). Centralized
approaches (RAO [54]), on the other hand, require each vehicle to
compute and share visibility maps or other large data structures to
inform others of their blind spots, incurring additional bandwidth
and computational overhead.
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Figure 6: Vehicle B shares only the relevant dynamic objects (A and C)
with C and A, respectively.

3 ARC Design
Overview. Consider an ARC deployment at the intersection. There
will be two types of dynamic objects: compliant and non-compliant.
Non-compliant objects are vehicles, pedestrians, and cyclists that do
not take part in cooperative perception. Compliant objects take part
in cooperative perception and are equipped with a LiDAR, comput-
ing resources, and a wireless radio. These objects can assume one
or more of the following roles: anchor, producer, and consumer. All
compliant objects spatially align themselves with the anchor. The
anchor can be a roadside-mounted LiDAR or a vehicle. Producers
share their 3D point clouds with consumers to augment their per-
ception. Moreover, we assume all vehicles (including the anchor)
share a semantic 3D map3, wherein every 3D point, besides its 3D
position, has a semantic label associated with it (a common practice
in the autonomous driving industry [2, 3, 14, 58]). This label defines
the object class of the point (e.g., vehicle, road, building etc.)

All vehicles (including the anchor) localize themselves in the
3D map. After localizing itself, as illustrated in Fig. 7, the an-
chor broadcasts its point cloud (A-PC) for other vehicles (step 1
in Fig. 7). Upon receiving the anchor point cloud, other vehicles
align their point clouds (PC) to it. Because point cloud alignment
can be compute-intensive, ARC finds and aligns only overlapping
regions of the point clouds (steps 2 and 3 in Fig. 7). ARC uses a
fast overlap estimation algorithm that operates on a 3D grid data
structure that vehicles share at the intersection. Once aligned to the
anchor, vehicles can share 3D data with one another.

When sharing 3D data, ARC shares only relevant data to save
network bandwidth. For this, every vehicle builds a compact scene
representation on the shared 3D grid. We refer to this scene represen-
tation as the voxel map. In this representation, each vehicle declares
the grid elements that are visible and occluded to it. Every vehi-
cle broadcasts this compact representation (step 4 in Fig. 7). Upon
receiving these representations from other vehicles, every vehicle
tries to find other vehicles that have visibility into their occluded
regions (step 5 in Fig. 7). The vehicle requesting the data is called
a consumer, and the one providing the data is called the producer.

3Existing approaches like SuMa++ [10] build semantic 3D maps by projecting 2D
image segmentation results onto LiDAR points or by directly applying 3D segmentation
models like RangeNet++ [28].
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Figure 7: An overview of ARC.

The consumer requests the producer to send 3D data about those
grid elements (step 6 in Fig. 7). The producer handles requests from
a single or multiple consumers (step 7. in Fig. 7). It extracts the
object points in the requested grid elements and then sends it to the
consumers (step 8. in Fig. 7). Once the consumer receives the data,
it positions and fuses it in its own point cloud and then downstream
perception modules consume the data (step 9 in Fig. 7).

If the intersection has a stationary roadside unit with a LiDAR,
by default, ARC will set that as the anchor. If not, then ARC uses a
moving vehicle as the anchor. ARC determines the anchor vehicle
based on proximity to the center of the intersection. To do this, after
localizing themselves in the 3D map, all vehicles broadcast their 3D
positions to others at the intersection. Then, at fixed time intervals4,
each vehicle computes the 3D distance of itself and all other vehicles
from the center of the intersection. The vehicle closest to the center
is selected as the anchor. In rare cases where multiple vehicles are
equally close, ARC breaks the tie by first comparing the x, and then
if required, the y coordinate of their 3D positions. Once selected, the
anchor vehicle begins broadcasting point clouds to other vehicles.
When the anchor leaves the intersection, ARC selects a new anchor.

3.1 Fast Overlap Extraction
The Problem. To reduce latency, ARC uses the anchor-based
alignment. In this, all vehicles at the intersection align themselves
with an anchor (a vehicle or a roadside mounted sensor). Point
cloud alignment is compute-intensive and incurs latency. A single
alignment operation can take up to 30 ms for point clouds generated
from a 128 beam LiDAR. This is not desirable as it does not leave
ample time for downstream modules to process the fused point cloud.
Key Insight. Alignment algorithms such as ICP compute a trans-
formation matrix that aligns two point clouds as follows. First, for
every point in one point cloud, ICP finds a neighboring point in the
second point cloud. Second, it computes the 3D distance between the
neighboring points. Third, it computes a transformation matrix that
minimizes the 3D distance calculated above. Then, it iterates over
again. The accuracy and latency of ICP depend on two things: a) a
coarse-grained alignment, and b) the overlapping region between
the point clouds. A coarse-grained alignment is advantageous for
two reasons: a) it reduces the chances of ICP converging to a local
minima, and b) it reduces the number of iterations for ICP to con-
verge to a transformation matrix. Building on prior work [21], we
use vehicles’ positions in a 3D map as an initial guess for alignment.
These need not be accurate, since their purpose is only to reduce the
search space for ICP. Lastly, finding the nearest neighbors for all 3D
points can be compute-intensive. However, the overlapping regions
(or common regions) between two point clouds are often relatively

4We set this interval to half of the average time it takes vehicles to cross the intersection.
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Figure 8: Computing the overlapping region between anchor and vehicle
point clouds.

small. So, computing the transformation matrix does not need the
entire point cloud but only the overlapping points.
Our Approach. ARC uses only the overlapping regions in two point
clouds for alignment. Before aligning the two point clouds, ARC es-
timates the overlapping regions between the two point clouds. Then,
it computes the transformation matrix for the overlapping regions
and applies the transformation matrix to the entire point cloud. It is
important to note though that using overlapping regions for point
cloud alignment is not novel to ARC. Prior works have computed
and aligned overlapping regions [21, 40]. However, computing the
overlap has traditionally been compute-intensive. To this end, ARC
proposes a novel and efficient algorithm (Algorithm 1) to compute
the overlap between two point clouds.

As illustrated in Fig. 8, all vehicles (including the anchor) share
the semantic 3D map defined earlier in §3, in which each 3D point is
annotated with its object-class label (Fig. 8a). Offline, ARC overlays
a 3D grid on top of the 3D map (Fig. 8b). Every vehicle (including
the anchor) matches its point cloud with the 3D map to find its
position in the 3D map (Fig. 8c and Fig. 8d). At every frame, the
anchor vehicle broadcasts its point cloud. When vehicles receive this
point cloud, using their own positions and that of the anchor in the
3D map, they project their point clouds onto the 3D grid (Fig. 8e)

After projecting both the point clouds on the grid, ARC employs
Algorithm 1 to find the overlapping regions. ARC maintains a dic-
tionary that records, for each 3D point, the index of the grid cell to
which it has been assigned (Algo. 1: lines 1-5). After this assignment,
for both point clouds, ARC computes the point density in each cell
of the grid (Algo. 1: lines 6-9). Point density of a cell is the number
of points within the cell divided by the cell’s size 5. From point
densities, ARC computes interpoint density for each cell (Algo. 1:
line 10). Interpoint density is the MIN of the point densities between
the anchor and vehicle 3D points. Prior work [21] shows that a large
number of cells with high interpoint density indicate a large overlap.
This, in turn, means a higher chance of accurate alignment.

Next, ARC filters out grid cells with high interpoint density
(Algo. 1: lines 11-14). From each point cloud, ARC crops 3D points
belonging to the cells with high interpoint density (Algo. 1: line 15).
ARC inputs only the overlapping regions to ICP and then uses the
computed transformation matrix on the entire point cloud.

5We used a grid cell size of 2 × 3 × 4 meters. A larger cell size reduces latency but also
lowers accuracy.

Algorithm 1: Fast overlap extraction
Input: Pvehicle, Panchor, 3D grid G
Output: cropped Pvehicle, Panchor

1 initialize cell assignment map M;
2 for p ∈ Pvehicle,Panchor do
3 find nearest cell c ∈ G;
4 append pvehicle to Mcvehicle and panchor to Mcanchor;
5 end
6 for each cell c ∈ G do
7 countPvehicle ← |Mcvehicle| , countPanchor ← |Mcanchor|;
8 ρvehicle =

countPvehicle
Sizecell

;

9 ρanchor =
countPanchor

Sizecell
;

10 ρint = min
(
ρvehicle,ρanchor

)
;

11 if ρint > threshold then
12 mark c for cropping;
13 end
14 end
15 crop selected cells from Pvehicle, Panchor;

Because finding the overlapping regions is easily parallelizable,
we offload this operation to the GPU. In our GPU implementation,
we create a list of 3D points corresponding to the cell centers in the
3D grid. Each separate GPU thread runs a nearest neighbor search.
In this search it assigns a 3D point from the point cloud to the closest
center in the list. Using the same grid, we process both anchor and
vehicle point clouds in parallel. After this for each cell, we calculate
the point density for both anchor points and vehicle points. At the
end we create a list of 3D points that belong to cells having high
point density. Both these lists are the dense overlapping regions of
the two-point clouds. All these operations are highly parallelizable,
allowing our system to compute the overlapping regions, crop them,
and align the point clouds in just a few milliseconds.

3.2 Relevant Data Extraction
The Problem. Wireless network bandwidth is limited. To this end,
prior works [34, 54] extract and share only the 3D points that be-
long to the relevant dynamic objects in the scene. Determining what
objects are relevant can be erroneous and latency-intensive. Auto-
Cast [34], a decentralized approach, requires the sender vehicle to
estimate what the receiver vehicle will need. This has two conse-
quences: a) the sender vehicle can make inaccurate estimates about
the receiver vehicle’s blind spots [54] and b) multiple sender vehicles
might transmit duplicate data to the receiver. We show and discuss
this in §4.4. Centralized approaches like RAO [54], on the other hand,
explicitly request the relevant 3D points from sender vehicles. To do
this, they construct and transmit data structures (occupancy maps)
that describes what the receiver vehicle sees. These data structures
are expensive to compute and transmit over the wireless network.

Last, to achieve higher alignment accuracy, ARC adds additional
computations for extracting overlapping regions and aligning them.
This adds to the overall end-to-end delay. ARC must minimize the
end-to-end delay to provide ample time to downstream modules to
process the fused point clouds.
Our Approach. To avoid sharing redundant data, in ARC, the
receiver (consumer) vehicle explicitly requests data from one or more
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Figure 9: Process of creating a voxel map representation from the vehicle’s point cloud using the shared 3D grid structure.

sender (producer) vehicles. For this, each vehicle needs to broadcast
what it sees. To mitigate the compute and network overheads of
sharing what the producers see and what the consumers need, ARC
reuses the shared 3D grid that vehicles use to align with the anchor.
Every vehicle finds out a set of indices, indicating the grid cells in
which it has visibility (i.e., cells where the point density is greater
than some predefined threshold).

At every frame, all vehicles (including producer, consumer, and
anchor) extract drivable space from their point cloud (Fig. 9a). Driv-
able space is that part of the environment on which a vehicle can
legally drive, e.g., the road surface. The 3D map has semantic labels
for every 3D point to describe the type of object those points belong
to. Because every vehicle is aligned to the 3D map, ARC can project
semantic labels from the 3D map to a vehicle’s point cloud and
extract drivable space from it.

Next, we compute the blind spots for every vehicle. This requires
spatial reasoning on the 3D point clouds, which can be expensive.
Instead, we reuse computations from ARC’s point cloud alignment.
Recall that every vehicle has assigned 3D points from its point cloud
to the shared 3D data structure (Fig. 9b). We mark grid cells where
point density is below a threshold, within the vehicle LiDAR’s depth
range, as blind spots. Blind spots are regions of the point cloud into
which the vehicle has little or no visibility.

After removing blind spots, there are two types of grid cells: with
objects and without objects. Since ARC focuses only on dynamic
objects, it shares only the cells containing objects. We identify be-
tween the two types of cells as follows. For the second class i.e.,
without objects, the LiDAR point cloud contains reflections from the
ground plane. While ARC could use plane-fitting algorithms (e.g.,
RANSAC [16]) and clustering to identify these cells, this approach
is computationally expensive. Instead, ARC leverages the 3D map.

ARC subtracts the drivable space of the 3D map, at the inter-
section, from the vehicle’s point cloud. After this subtraction, the
vehicle’s point cloud only has 3D points above the road surface.
These points belong to dynamic objects. Because the vehicle’s point
cloud has already been projected in the shared 3D grid, this grid now
has two types of cells: a) blind spot cells (Fig. 9c: blue boxes) and
b) cells containing dynamic objects (Fig. 9c: green boxes).

Next, we compute the motion vectors of dynamic objects in the
vehicle’s point cloud. For this, we follow the standard tracking
approach used in previous work [54] that maintains an affinity matrix
for 3D multi-object tracking. In ARC, we calculate the affinity score

between occupied cells across frames using the following equation:

T
(
Ct−1,Ct

)
= w1 ·L2

(
Ct−1,Ct

)−1 + w2 ·
∣∣ρct−1 −ρct

∣∣ ,
where Ct−1 and Ct are the centroids of occupied cells in two

consecutive frames. The first term, L2
(
Ct−1,Ct

)−1, represents the
inverse Euclidean distance between the centroids, while the sec-
ond term,

∣∣ρct−1 −ρct

∣∣, measures the absolute difference in point
densities of the two cells. The coefficients w1 and w2 allow us to
adjust the relative importance of these two components. For each
cell in the current frame, the cell in the previous frame that maxi-
mizes T

(
Ct−1,Ct

)
is considered to correspond to the same object.

By maintaining lists of occupied cells and their point densities across
consecutive frames, we construct an affinity matrix that maps cells
in the current frame to those in the previous frame. Using this matrix,
we then compute the motion vectors of all occupied cells.

At this stage, every vehicle has two types of cells: a) object cells
(ones with dynamic objects) and b) blind spots. With every object
cell, ARC associates a motion vector and point density (computed in
§3.1). Next, ARC embeds this information into voxel map (Fig. 10).
The voxel map is built on top of the shared 3D grid. Instead of storing
the 3D location of every cell, the voxel map simply stores the index
of that cell in the 3D grid. It builds two lists of indices i.e., one for
the blind spot cells and the other for object cells. Within the list for
object cells, it embeds motion vector and point density information
as well (Fig. 10a and Fig. 10b). Every vehicle broadcasts its voxel
map to other vehicles at the intersection.

Every vehicle receives voxel maps from others at the intersection.
Using these voxel maps, for each blind spot cell, the consumer vehi-
cle determines which other vehicles (producers) at the intersection
have that cell as an object cell with a desired point density. For
instance, in Fig. 10b, the vehicle has blind spot cells 6,7. It finds
another vehicle (Fig. 10a), for which these cells are object cells. The
consumer requests these cell points, the producer extracts the points,
and shares them with the consumer. The consumer performs motion
compensation and fuses the points with its own objects (Fig. 10c).

4 Evaluation

4.1 Methodology
Implementation. We implemented ARC in C++. To build the 3D
map, we used Fast-LIO2 [48]. Vehicles localize in this map us-
ing Normal Distribution Transform (NDT [5]). We used the Point
Cloud Library (PCL) [38] for point cloud manipulation operations.
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Figure 10: Voxel maps and grid cells for the producer (a), the consumer (b), and the fused object points from the consumer (c).

Figure 11: Real-world data collection setup with two vehicles and RSUs.

PCL supports CUDA. ARC is 3,500 lines of C++ code. We evalu-
ated ARC on a laptop with a 13th-generation Core i9 CPU and an
NVIDIA GeForce RTX 4070 laptop.
Real-world Traces. We built a testbed to collect real-world traces
using four LiDARs, two mounted on roadside units and two on
moving vehicles, as shown in Fig. 11. There was other vehicular
and pedestrian traffic as we collected the data. One of the roadside
units was equipped with a 128-beam LiDAR, whereas the remaining
roadside unit and vehicles were equipped with 64-beam LiDARs.
Although we collected a large corpus of data, we manually aligned
400 point clouds for accuracy evaluations.
Synthetic Traces. We used CARLA [15], an industry-standard pho-
torealistic simulator, to generate synthetic LiDAR traces. It offers
flexibility in simulating diverse traffic conditions and sensor con-
figurations. Moreover, CARLA provides ground-truth point cloud
alignments, enabling a comprehensive evaluation of accuracy.
Evaluation Metrics. In our evaluations, we measure the latency,
accuracy, and bandwidth consumption of ARC on a per-frame basis.
Latency is the time duration that starts from when a vehicle captures
a LiDAR point cloud to the point in time where it fuses it with the
points received from others. This consists of compute latency and
network latency. We measure only the compute latency. This is the
time to run ARC’s algorithms. Network latency is the time it takes
for data to travel from one vehicle to another. Network latency is
more difficult to evaluate because of the scale of the experiments
(i.e., 40+ vehicles). For this, we measure bandwidth consumption
instead. We measure the amount of data each vehicle generates to
share over the network for cooperative perception.

For accuracy, we evaluate alignment accuracy. We compute rela-
tive translational error (RTE) and relative rotational error (RRE) [18].
Both are the root mean square error between the estimated and
ground truth transformations, with lower values indicating higher ac-
curacy. RTE is ||t− tg||2, where t is the translation vector estimated
by ARC and tg is the ground truth. RRE is Σ3

i=1| angle (i) |, where
the angles are extracted from F (R−1

g ·R). The function F(.) converts

Figure 12: Bird’s-eye view of the CARLA intersection used for synthetic
data collection.

a rotation matrix into three Euler angles, and Rg and R denote the
ground truth and estimated rotation matrices, respectively.
Baselines. Two recent vehicle-to-vehicle cooperative perception
approaches are AutoCast [34] and RAO [54]. AutoCast uses a 3D
map for alignment, while RAO relies on GPS/IMU, which is known
to introduce higher errors [19]. Therefore, we compare ARC only
against AutoCast as a representative baseline.

4.2 End-to-end Experiments: Accuracy
In this section, we evaluate ARC ’s accuracy in aligning point clouds.
CARLA Traces. To evaluate the accuracy, we simulated vehicular
traffic at an intersection in CARLA with 40 vehicles ( Fig. 12).
All the vehicles participate in cooperative perception. We equipped
each vehicle with a 32-beam LiDAR (modeling the Velodyne VLP-
32C [24]). We also mounted a roadside unit with the same LiDAR.
From this experiment, we recorded 6,000 point clouds (150 point
clouds for each vehicle). We then aligned all vehicles with each other,
resulting in 50,000 unique alignments after removing duplicates. We
used ARC and AutoCast [34] to estimate the transformation matrices
for all the pairs. Recall that AutoCast [34] uses the 3D map to align
vehicles. On average, ARC improves accuracy (Fig. 13 and Fig. 14)
by an order of magnitude compared to AutoCast. The average RTE
for ARC is 2 cm, whereas 13 cm for AutoCast. The average RRE
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Figure 13: Comparison of ARC and AutoCast accuracy (RTE) on the
CARLA dataset.
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Figure 14: Comparison of ARC and AutoCast accuracy (RRE) on the
CARLA dataset.

for ARC is 0.1°and for AutoCast, it is 0.2°. In the CDF plots (Fig. 15
and Fig. 16), ARC achieves significantly tighter alignment error
distributions for both RTE and RRE, with the entire error range
bounded within 7 cm and 0.15°, compared to 67 cm and 0.8° for
AutoCast. Also, as reported in Tbl. 1, ARC consistently achieves
substantially lower tail errors compared to AutoCast. Specifically,
the 95th and 99th percentile RTE values reduce from 27 cm and
38 cm to 5 cm and 6.5 cm, while the 95th and 99th percentile RRE
values improve from 0.4° and 0.5° to 0.14° and 0.16°, respectively.
The improvement in alignment accuracy is because ARC utilizes an
anchor point cloud for alignment, which does not accumulate noise
over time. In contrast, the 3D map used by AutoCast can accumulate
mapping errors due to sensor noise, inaccurate alignments, and
the presence of dynamic objects. These errors, in turn, affect the
accuracy of the estimated transformation matrices.
Real-world Traces. We also evaluated ARC’s alignment accu-
racy on real-world LiDAR traces from our testbed, consisting of
two vehicles and two stationary roadside units. To generate ground
truth, we manually aligned point clouds (with a large overlap) using
CloudCompare [1]. With an average RTE and RRE of 6.4 cm and
0.34°, ARC demonstrates up to 2x improvement in alignment accu-
racy compared to AutoCast (Fig. 17 and Fig. 18). ARC achieves sig-
nificantly lower tail errors compared to AutoCast. The 95th and 99th
percentile RTE values decrease from 34 cm and 48 cm to 10.7 cm
and 11 cm, while the 95th and 99th percentile RRE values improve
from 1.22° and 1.58° to 0.53° and 0.55° (Tbl. 2), respectively.These
numbers are slightly higher than those from the synthetic traces,
reflecting the increased complexity of real-world environments.

4.3 End-to-end Experiments: Latency
Next, we measure ARC’s end-to-end compute latency. It is the time
a vehicle takes to prepare its own data for sending, plus the time
required to process incoming data from other vehicles and fuse it

Apporach RTE (cm) RRE (◦)
Mean p95 p99 Mean p95 p99

AutoCast 13.1 27.4 38.14 0.2 0.38 0.47
ARC 2.0 4.87 6.4 0.1 0.14 0.16

Table 1: End-to-end accuracy comparison of ARC and AutoCast on CARLA
dataset.
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Figure 15: Comparison of CDFs illustrating ARC and AutoCast accuracy
(RTE) on the CARLA dataset.

0.0 0.2 0.4 0.6
RRE (degree)

0.0

0.4

0.8

C
D

F

AutoCast ARC

Figure 16: Comparison of CDFs illustrating ARC and AutoCast accuracy
(RRE) on the CARLA dataset.

Apporach RTE (cm) RRE (◦)
Mean p95 p99 Mean p95 p99

AutoCast 13.30 34.3 48.0 0.55 1.22 1.58
ARC 6.40 10.7 11.0 0.34 0.53 0.55

Table 2: End-to-end accuracy comparison of ARC and AutoCast on the
real-world dataset (including 95th and 99th percentiles).

with its own point cloud. We measure the compute latency for Auto-
Cast and ARC for each vehicle on the 40-vehicle CARLA dataset.
We evaluate both approaches using the same compute platform as
described in §4.1. For a fair comparison, we exclude the latency for
path planning and collision avoidance in AutoCast. Even so, ARC
is an order of magnitude faster than AutoCast. The average latency
for ARC (Fig. 19: blue) is 14.8 ms, whereas for AutoCast (Fig. 19:
orange), this is 103 ms. With an approximately 15 ms end-to-end
compute latency, ARC provides network and downstream modules
(perception, planning, and control [32]) approximately 85 ms to
process the fused point cloud. On the other hand, since AutoCast
generates the fused point cloud in 103 ms, by the time downstream
modules consume it, the data is already stale.

ARC ensures low latency even with additional alignment op-
erations for accuracy, for several reasons. Alignment is efficient
because it aligns only overlapping regions. Even so, ARC further
reduces alignment overhead by reusing computations used in deter-
mining overlaps to calculate vehicle blind spots. Lastly, AutoCast
uses CPU-intensive computations. In contrast, we designed ARC
with parallelized operations so it makes use of the GPU. All the
components of ARC run on GPU.

We provide the latency breakdown for all the components of ARC
in Tbl. 3. Localization latency refers to the time the vehicle takes to
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Figure 17: Comparison of ARC and AutoCast accuracy (RTE) on the
realworld dataset.
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Figure 18: Comparison of ARC and AutoCast accuracy (RRE) on the
realworld dataset.

0 500 1000 1500 2000 2500 3000 3500
Frame number

0

250

500

La
te

nc
y 

(m
s)

AutoCast (avg: 103.1 ms) ARC (avg: 14.8 ms)

Figure 19: Comparison of ARC and AutoCast end-to-end compute latency
on the CARLA dataset.

Process (on GPU) Latency (ms)

Localization 2.1
Overlap estimation 0.3
Anchor alignment 2.0

Producer processing 2.0
Consumer processing 8.4

Total 14.8

Table 3: ARC’s compute latency breakdown for the CARLA dataset.
use NDT to align with the 3D map. Overlap estimation latency is the
time it takes for a vehicle to estimate an overlap between its point
cloud and the anchor point cloud. Anchor alignment latency is the
time required for the vehicle to align its overlapping region with the
anchor. Producer processing latency involves identifying the objects
requested by the consumer and sharing them with the consumer.
Consumer processing is the most computationally expensive module,
encompassing object extraction, blind spots detection, objects cells
estimation, motion vector estimation, and producers assignment.

We also evaluated the compute latency of ARC on real-world
traces. The average latency per frame is 20 ms. This is slightly higher
than the 15 ms measured using synthetic traces, which used a sparser
LiDAR setup (32 beams instead of 64 or 128). We analyze the effect
of LiDAR channel count on compute latency in §4.6. In our real-
world deployment, both LiDARs are 64-beam or 128-beam, which
explains the increased latency. On average, ARC takes 20 ms per
frame across all four agents.
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Figure 20: Cumulative bandwidth consumption for 40 vehicles using syn-
thetic traces, comparing ARC and AutoCast.
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Figure 21: ARC and AutoCast comparison: bandwidth consumption per
frame per vehicle for synthetic traces.

Approach 3D Points (MB) Control (MB) Total (MB)

AutoCast [34] 0.87 0.1 0.97
ARC 0.44 0.58 1.02

Table 4: Per-frame control and 3D (LiDAR data) sharing comparison be-
tween ARC and AutoCast for CarLA dataset.

We could not measure AutoCast’s compute latency on the
real-world dataset because it requires access to the vehicle’s
path-planning module, which raised safety concerns. Furthermore,
the open-source implementation of AutoCast only supports CARLA
simulations and does not provide support for real-world deployment.

4.4 End-to-end Experiments: Network
Next, we measure the networking requirements of ARC. We quantify
the amount of bandwidth needed per frame, by all vehicles combined,
in both synthetic and real-world traces. On average, ARC needs
81 Mbps (Fig. 20: green) for 40 vehicles. AutoCast, on the other
hand, needs 78 Mbps (Fig. 20: orange). The bandwidth requirement
for ARC is higher than AutoCast, the reason is that each frame, the
anchor broadcasts its point cloud. When the anchor is a stationary
roadside sensor, the bandwidth requirement for ARC is much lower
and only 34 Mbps (Fig. 20: blue). This is because the anchor shares
its reference point cloud with the vehicles only once, not periodically.
The reason for AutoCast’s higher bandwidth is the redundant data
sharing, which becomes worse with a large number of vehicles.

We also provide a communication cost breakdown for both Auto-
Cast and ARC (Tbl. 4). ARC reduces 3D point data sharing from
0.87 MB to 0.44 MB per frame by eliminating redundant transmis-
sions, but incurs higher control overhead (0.58 MB vs. 0.1 MB) due
to per-frame anchor point cloud broadcasts. Despite this, the total
data produced remains comparable (1.02 MB vs. 0.97 MB).

Additionally, we also calculate the per-vehicle bandwidth required
for each frame. Per vehicle, the required bandwidth for ARC and
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Approach Error Lat. (ms) BW (Mbps)RTE (cm) RRE (◦)

Indirect 13.1 0.20 2.10 78
Direct 1.5 0.05 ∞ ∞

ARC (moving) 2.0 0.10 14.8 81
ARC (stationary) 2.5 0.10 15.5 34

Table 5: Performance of various alignment strategies of ARC.

Alignment Technique Error Lat. (ms)RTE (cm) RRE (◦)

FGR 448 4.0 230
SAC-IA 900 30 280

R-PointHop 733 45 600
Go-ICP 327 10 730

ICP (GPS) 536 16 185
ICP (3D map) 2.3 0.1 25

ARC 2.0 0.1 2.7

Table 6: Comparison of alignment accuracy and latency performance be-
tween ARC and prior scan-matching, feature-based, and learning-based
alignment techniques.
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Figure 22: Impact of anchor broadcast frequency on ARC’s alignment error
and bandwidth requirements.

AutoCast is 2.9 Mbps, and 2.7 Mbps, respectively (Fig. 21). We
exclude frames in which no data is shared between vehicles, as
they do not contribute to cooperative perception. For real-world
traces, each vehicle uses about 0.5 Mbps of bandwidth due to fewer
vehicles sharing data compared to the synthetic dataset. Again, we
were unable to evaluate the bandwidth consumption for AutoCast
since it required access to the motion planning module of the vehicle.

4.5 Ablation Studies
In this section, we perform ablation studies to quantify ARC’s design
decisions for point cloud alignment and data sharing.
Alignment Strategies. In Tbl. 5, we evaluate the alignment accu-
racy, compute latency, and bandwidth requirement for four different
strategies that align 3D point clouds in cooperative perception. The
four strategies are indirectly aligning point clouds using a 3D map
(Indirect), directly aligning point clouds (Direct), and using ARC
to align point cloud with moving and stationary anchors. Ideally, to
ensure the highest alignment accuracy, we should directly align the
two point clouds. However, this approach is not feasible because
of computational and network limitations. If a vehicle has to fuse
its point cloud with multiple vehicles, it will need to run multiple
alignment operations per frame, and this can easily exhaust compute
resources. The same is true for required network bandwidth as well,
because every vehicle will be broadcasting its entire point cloud.

The lowest latency is for indirect alignment because, once both
vehicles are aligned through the 3D map, they are also aligned with
one another. However, this approach can cause high alignment errors.
ARC carefully navigates this tradeoff to simultaneously achieve low

alignment error, low compute latency, and low bandwidth require-
ment. ARC’s point cloud alignment is fast because it only aligns
overlapping regions. Second, the bandwidth requirement is relatively
lower because it only shares relevant information with other vehicles
instead of the entire point cloud. Bandwidth requirement for ARC
with a stationary anchor is the least because it does not need to broad-
cast the anchor point cloud at every frame and only shares relevant
parts of the 3D point cloud with other vehicles. Lastly, the alignment
error is lower than indirect and is comparable to direct alignment
because it aligns against an anchor point cloud, as opposed to a 3D
map that accumulates errors over time.
Overlap-aware Alignment. In this section, we evaluate ARC’s
ability to accurately and efficiently align vehicle point clouds to the
anchor using overlap-aware alignment. For this, we use a CARLA
dataset consisting of 150 vehicle and anchor point cloud pairs. We
align each vehicle point cloud to the anchor. In Tbl. 6, we com-
pare ARC’s alignment accuracy and latency against scan match-
ing, feature matching, and learning-based techniques. Feature-based
techniques (FGR [57] and SAC-IA [37]) have high alignment errors
because they are unable to match point cloud features captured from
diverse viewpoints. R-PointHop [20], a recent learning-based align-
ment technique that uses hierarchical features for correspondences,
is also unable to accurately align sparser vehicle point clouds. The
alignment error for R-PointHop is on the order of 700 cm.

Scan-matching techniques such as ICP [36] are sensitive to ini-
tialization. Poor initial guesses (such as those provided by GPS)
result in inaccurate alignments and high latency. On the other hand,
variations of ICP less sensitive to initial guesses (GO-ICP [49]) can
be compute-intensive (730 ms latency). Although 3D maps provide
more precise initial guesses, aligning entire point clouds is compute-
intensive (latency on the order of 25 ms).

In contrast, ARC achieves fast alignment with a latency of only
3 ms and high accuracy, with a RTE of just 2 cm. Its speed and accu-
racy come from aligning only overlapping regions and leveraging a
relatively accurate initial guess.
Anchor Broadcast Frequency. We also evaluate how reducing
the anchor’s broadcast frequency impacts alignment accuracy and
bandwidth. Using the CARLA dataset (§4.2), we vary the broad-
cast interval from broadcast every frame to broadcast after every
10 frames ( Fig. 22). The alignment error increases only slightly
from 1.9 cm to 2.3 cm (right y-axis), while bandwidth usage drops
significantly from 81 Mbps to 40 Mbps (left y-axis). The results
show that our approach can adapt to lower network bandwidth by
reducing broadcast frequency, with up to 50% bandwidth savings
and minimal loss in alignment accuracy. However, the downside
is that if a vehicle misses a broadcast, it must wait several frames
before receiving the next anchor point cloud, which is not the case
when broadcasting occurs every frame.

4.6 Sensitivity Analysis
We perform a sensitivity analysis to assess the impact of anchor
point cloud occlusion, traffic density, vehicle speed, and sensor
configurations on ARC.
Anchor Point Cloud Occlusion. ARC’s alignment accuracy de-
grades as occlusion of the anchor’s point cloud increases. Using our
CARLA dataset (§4.2), we simulate occlusion levels from 10% to
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Figure 23: Impact of anchor occlusion on ARC’s alignment accuracy.

90% by obscuring portions of the anchor’s point cloud. As shown
in Fig. 23, the alignment error exceeds 10 cm when occlusion is
above 50% and grows to meters beyond 80%. In our dataset, with
40 vehicles at the intersection, the average occlusion is 17% (cor-
responding to a 2 cm error), with 95th and 99th percentiles at 24%
(2.3 cm) and 27% (2.7 cm), respectively. This demonstrates that
even with a higher occlusion level, i.e., up to 27%, ARC is able to
maintain an alignment error less than 3 cm.
Traffic Density. To evaluate the effect of traffic density, we sim-
ulated three different traffic conditions in CARLA. For low traffic,
we had 10–15 vehicles, for medium 15 - 30 vehicles, and for high
traffic 30 - 40 vehicles at the intersection. We summarize the results
in Tbl. 7. As we increase the traffic density, the required bandwidth
for ARC increases from 56 Mbps to 81 Mbps. This is because, with
a greater number of vehicles, there are more blind spots and vehi-
cles exchange more data. The compute latency, however, remains
relatively constant. This is because, regardless of the number of ve-
hicles in the surroundings, the point cloud alignment and decision of
what data to share are relatively time-constant operations. Last, the
alignment error increases only marginally with increased vehicles.
Vehicle Speed. To quantify the impact of vehicle speed, we collected
multiple traces in CARLA with vehicles driving at different speeds.
We kept the traffic density constant (low). We summarize the results
in Tbl. 8. Low corresponds to an average speed of 25 km/hr, medium
to 50 km/hr, and high to 75 km/hr. The results conclude that ARC is
agnostic of the underlying vehicle speeds. It has a minimal impact
on alignment accuracy, latency and bandwidth consumption.
LiDAR Channels. In the last set of sensitivity analysis experi-
ments, we evaluated ARC’s performance in response to different
LiDAR configurations. We deployed 32-beam, 64-beam, and 128-
beam LiDARs at the traffic intersection in CARLA. We kept the
traffic density constant (low). We summarize the results in Tbl. 9.
Increasing the number of channels increases both compute latency
and required network bandwidth. This is because ARC’s anchor
alignment, overlap estimation, and object extraction are sensitive to
the number of points in the point cloud. Higher-resolution LiDARs
produce denser point clouds, due to which these modules need more
cycles for processing. Moreover, more dense point clouds also mean
there will be denser regions to share to compensate for blind spots,
leading to higher required network bandwidth. Lastly, denser point
clouds lead to greater overlap, which improves alignment accuracy.

4.7 Application-Level Benefits

Improved Visibility. We demonstrate the application-level benefits
of ARC over AutoCast by evaluating its ability to detect vehicles
in blind spots at a traffic intersection. For this, we define visibility

Traffic Density Error Lat. (ms) BW (Mbps)RTE (cm) RRE (◦)

Low (10 - 15) 1.40 0.05 14.5 56
Medium (15 - 30) 1.75 0.06 14.2 67

High (30 - 40) 2.00 0.10 14.8 81

Table 7: Effect of traffic density on ARC’s performance.

Vehicle Speed Error Lat. (ms) BW (Mbps)RTE (cm) RRE (◦)

Low (25 km/hr) 1.26 0.03 13.4 56
Medium (50 km/hr) 1.30 0.03 13.6 59

High (75 km/hr) 1.40 0.05 14.5 59

Table 8: Effect of varying vehicle speed on ARC’s performance.

LiDAR Channels Error Lat. (ms) BW (Mbps)RTE (cm) RRE (◦)

32 1.4 0.05 14.5 56
64 1.3 0.03 17.6 71

128 1.1 0.02 22.5 86

Table 9: Effect of LiDAR channels on ARC’s performance.
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Figure 24: A CARLA scenario, where vehicles D and C are occluded in
vehicle A’s point cloud by a building on the right side of vehicle A.

coverage as the number of vehicles detected within the perception
range of a vehicle (regardless of line-of-sight limitations).

In Fig. 24a, we show a CARLA scenario in which four vehicles
are approaching an intersection. Each vehicle is equipped with a
32-beam LiDAR (120 m range). Fig. 24b shows vehicle A’s LiDAR
point cloud. In this view, vehicles C and D are missing. This is due
to a blind spot created by the building on the right side of vehicle A.

In Fig. 25, we plot the number of vehicles detected by vehicle A
as a function of its distance from the center of the intersection. Using
AutoCast, vehicle A detects vehicle C only at 16 m and vehicle D
at 12 m. In contrast, with ARC, vehicle A maintains visibility of
all three vehicles throughout its trajectory. The reason for this is
AutoCast uses ray-casting to find blind spots and shares data about
objects hidden by objects (vehicles). However, it ignores occlusions
caused by static objects like buildings. In contrast, ARC detects blind
spots as low-density areas in the point cloud and allows vehicles to
share data to fill these gaps.
Improved Point Density. In this section, we demonstrate that ARC
improves point density (number of points per unit volume) in blind
spot regions compared to AutoCast. To do this, we simulated a sce-
nario in CARLA (Fig. 26a) with vehicles A, B, and C approaching
the intersection. Each vehicle is equipped with a 32-beam LiDAR
(120 m range). We compare the mean point density of vehicles vis-
ible to vehicle A (Fig. 26b) for both AutoCast and ARC. Fig. 27
plots this comparison, showing the mean point density of vehicles
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Figure 25: Comparison of AutoCast and ARC in the scenario shown in
Fig. 24, showing the number of vehicles visible to vehicle A in each frame.
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Figure 26: A CARLA scenario, where vehicles A, B, and C are approaching
an intersection. In vehicle A’s point cloud, both vehicle B and C are visible.
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Figure 27: Mean point density of objects visible to vehicle A in each frame,
comparing AutoCast and ARC in the scenario shown in Fig. 26.

visible to A as a function of A’s distance from the center of the inter-
section. ARC significantly improves, i.e., 3x, the mean point density
compared to AutoCast. AutoCast activates perception data exchange
only in the presence of occlusions. However, ARC focuses on re-
gions with low point density (limited visibility), which inherently
includes both blind spots and other low-density areas. This leads to
more effective and comprehensive data sharing. This, in result, en-
ables downstream perception modules, such as object detection [51]
and semantic segmentation [29] to operate on point clouds with
higher point density, which they require for better accuracy [13].

5 Related Work
Cooperative Perception. Cooperative perception enables vehi-
cles to extend their sensing range beyond what their own sensors
can capture. It mainly follows two approaches: vehicle-to-vehicle
(V2V) [27, 33, 34, 54] and vehicle-to-infrastructure (V2I) [11, 18,
39, 50, 56]. V2V is appealing because it does not rely on roadside
infrastructure, but it poses significant scalability challenges. Some
V2V methods, such as AutoCast [34], and RAO [54], exchange raw
point clouds, while others, including OPV2V [47], F-Cooper [9],
Core [44], V2V-LLM [12], and InterCoop [46], share processed data

instead. These approaches aim to balance latency, accuracy, and
scalability, but often improve one at the cost of another. In contrast,
ARC is a V2V cooperative perception system that achieves high
accuracy and scalability without compromising latency.
Sensor Data Alignment. To fuse external sensor data, a vehicle
must align it to its own coordinate system; either directly using
algorithms like ICP [36] or indirectly through a shared 3D map or
GPS. Direct alignment techniques are accurate [21], but not scalable.
Indirect methods scale better but suffer from low accuracy. Most of
the existing approaches rely on 3D maps [33, 34] or GPS [9, 47, 54]
for indirect alignment, both of which provide limited alignment
accuracy. In contrast, ARC uses a single point cloud for indirect
alignment to simultaneously achieve scalability and accuracy.
Sharing Relevant Information. Cellular Vehicle-to-Everything (C-
V2X) [52] allows vehicles to communicate with each other and
nearby infrastructure. It supports data rates up to 100 Mbps [53],
but sharing raw sensor data can quickly saturate the network. Early
methods like AVR [33] tried to send all data, but they do not scale.
EMP [55] reduces data by performing spatial reasoning at the edge,
yet its high latency limits scalability. More recent methods [34, 54]
share only relevant information, such as occluded objects. Auto-
Cast [34] reduces bandwidth but can be inaccurate and redundant.
RAO [54] improves accuracy and avoids redundancy, but introduces
additional computation. In contrast, ARC reuses computations from
its alignment module to perform fast and accurate spatial reasoning.
This allows scalable information sharing without adding latency.

6 Discussion and Future Work

Impact of Network Latency. In practice, ARC ’s end-to-end la-
tency consists of compute latency (the time to run ARC ’s algo-
rithms) and network latency (the time to transmit data over the wire-
less network). Because directly measuring network latency across
tens of communicating vehicles was infeasible for safety and scale
reasons, our evaluation focuses on compute latency. On average,
ARC ’s compute latency is 20 ms per point cloud, leaving approxi-
mately 80 ms within the 100 ms reaction window required for safe
autonomous operation [26].

For network evaluations, we quantified the wireless bandwidth
required to run ARC. On average, ARC needs 40 Mbps of sustained
network bandwidth. Existing technologies such as 5G New Radio
Vehicle-to-Everything (NR V2X), which support both vehicle-to-
vehicle and vehicle-to-infrastructure communication, can theoreti-
cally achieve up to 100 Mbps throughput with sub-10 ms one-way
latencies [17]. Field deployments typically demonstrate 30–40 Mbps
sustained throughput [7]. These figures suggest that ARC ’s band-
width and latency demands are within the operational range of cur-
rent NR V2X systems. However, we note that in practice, network
performance depends on several factors, including the wireless en-
vironment, technology stack, and network density. At higher traffic
densities, contention and scheduling overheads can increase latency.
Though we leave a more thorough evaluation to future work, below,
we qualitatively describe the effects of network latency on ARC.

Anchor selection exchanges small control messages; hence net-
work impact is minimal. In contrast, anchor broadcasts involve large
point clouds that consume significant bandwidth and can delay the



ARC: Accurate, Real-time, and Scalable Multi-vehicle Cooperative Perception Sensys ’26, May 11–14, 2026, Saint-Malo, France

start of alignment if the network is congested. Reducing the fre-
quency of broadcasts (§4.5) helps mitigate this effect but does not
eliminate it, especially as fleet size grows. Future network technolo-
gies, such as mmWave [42], offering higher data rates and improved
scheduling efficiency, are expected to further reduce latency, en-
abling more timely and scalable operation of ARC.
Adding Multiple Anchors. In §4.2, we show that ARC achieves
an accuracy of 2 cm with a single anchor. Deploying multiple an-
chors could translate to a larger overlap between anchors and other
vehicles. Moreover, it adds an additional layer of robustness to ARC.
However, this comes at the cost of increased network load and com-
plexity, as all anchors must broadcast their point clouds and perform
mutual alignment. We leave a thorough evaluation to future work.

7 Conclusions
In this paper, we have presented ARC, a multi-vehicle cooperative
perception framework that achieves high accuracy and low latency
while scaling efficiently to a large number of vehicles. We eval-
uated ARC against state-of-the-art methods on two datasets: one
collected in the real world using 64- and 128-beam LiDARs, and
another logged from CARLA. The results show that ARC achieves
an order-of-magnitude improvement in both latency and accuracy.
Specifically, ARC offers an alignment accuracy of less than 7 cm
with an end-to-end compute latency of only 20 ms. Moreover, it
provides improved point density and enhanced visibility coverage
compared to existing approaches. Finally, we demonstrated the ro-
bustness of ARC through sensitivity analysis with respect to traffic
density, vehicle speed, and LiDAR configuration.
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